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Figure 1: Left: Improvement of mAP score (%) of our method with
respect to Logistic regression for groups of classes with least annotations
(left bar) to most annotations (right bar) in Open Images. The red curve
shows the number of available training images in each group. Our method
significantly improves over Logistic especially for the middle groups that
have sufficient annotations. Right: mAP score of our method on the valida-
tion set during training. We observe that the performance curve fluctuates
at the early stage of the training since the model struggles to refine noisy
label graph and learn the data manifold. However, after 20k iterations,
the learning curve monotonically improves until convergence. Here, each
iteration corresponds to a gradient descent step on a minibatch.

1. Additional Results on Open Images

Figure 1 shows the mAP improvement of our method
(IMCL) over the logistic regression when dividing labels
into 10 groups (instead of 5, discussed in the main paper).
Notice that our method improves the mAP score over the
logistic regression for all the 10 groups. This shows the ef-
fectiveness of using the collaborative similarity learner in
conjunction with the logistic model, which regularizes the
network and takes advantage of semantic similarities across
images and labels. Also, the right plot in Figure 1 shows the
improvement of the mAP score on the validation set during
training. We observe that the performance fluctuates at the
early stage of the training as the model tries to refine the
noisy label graph and learn the data manifold. However,
after 20k iterations, the learning curve monotonically im-
proves until convergence.

2. Detailed Results on CUB Dataset

Table 1 shows the exact performance of different meth-
ods as a function of the percentage of missing attributes on
the CUB dataset (in the main paper, we showed bar charts).

Missing Logistic CNN-RNN Fast0Tag Curriculum IMCL IMCL
attributes Labeling a = 1 a = 10

90% 23.8 23.3 23.3 23.8 25.3 25.7
80% 25.2 25.0 25.0 25.7 26.4 26.4
60% 26.4 27.3 27.3 27.4 27.3 27.9
40% 26.6 26.9 27.2 27.8 27.7 27.8
20% 26.6 27.3 27.6 27.8 27.5 27.6
0% 27.9 27.2 27.9 27.9 28.6 28.7

Table 1: mAP scores (%) as a function of the percentage of
missing attributes in the CUB dataset.

CNN-RNN LSEP Wsabie Fast0Tag Latent Noise Latent Noise Curriculum IMCL
(relevant) (visual) Labeling

-0.6 0.1 0.1 0.0 0.9 1.0 1.5 1.9

Table 2: Improvement of mAP score (%) of different meth-
ods over the logistic regression on the MS-COCO dataset.

3. Detailed Results on MS-COCO Dataset

Table 2 shows the exact mAP improvement of differ-
ent methods over the logistic regression on the MS-COCO
dataset (in the main paper, we showed bar charts).

4. Interactive Learning Framework

In this section, we present the derivations of our pro-
posed Joint Nonnegative OMP algorithm for finding seman-
tically similar images, in the similarity learning step in our
framework, presented in the main paper. We then discuss
the computational complexity of our algorithm.

4.1. Joint Nonnegative OMP Derivation

Consider our objective function with the classifier pa-
rameters, {θj}|L|j=1,w, written as

min
w,θ1,...,θ|C|

∑
i

L(i)
c

(
w, {θj}|C|j=1

)
+ L(i)

s

(
w, {θj}|C|j=1

)
,

(1)
where the cross entropy loss for image i is defined as

L(i)
c , −

∑
j∈Ωi

yoj,i log(pj,i) + (1− yoj,i) log(1− pj,i), (2)
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and the prediction smoothness loss for image i is defined as

L(i)
s , min

{ci′,i,c̄i′,i}
λy

∥∥∥yi − tanh
( N∑

i′=1

ci′,iAyi′

)∥∥∥2

2

+ λf‖f i −
N∑

i′=1

c̄i′,if i′‖22

s. t.
∑
j

I
(∥∥[ci′,i, c̄i′,i]∥∥)≤k, ci′,i, c̄i′,i ≥ 0, ∀i′.

(3)

To efficiently solve for image and label similarities, we use
a first-order approximation of the hyperbolic tangent func-
tion in L(i)

s , which is tanh(x) ≈ x. This is a good ap-
proximation as long as tanh is not saturated. Using this
approximation, we can rewrite (3) as

L(i)
s , min

{ci′,i,c̄i′,i}
λy‖yi −

N∑
i′=1

ci′,iAyi′‖22

+ λf‖f i −
N∑

i′=1

c̄i′,if i′‖22

s. t.
∑
j

I
(∥∥[ci′,i, c̄i′,i]∥∥)≤k, ci′,i, c̄i′,i ≥ 0, ∀i′.

(4)

To compute the loss function L(i)
s , we need to solve the

joint nonnegative sparse optimization in (4) over both ci′,i
and c̄i′,i. We generalize [1], a greedy nonnegative sparse
solver, to efficiently solve for both nonnegative similarity
coefficients. More specifically, we use a generalization of
OMP that starts from the empty set, at each iteration selects
the best image i′ that minimizes the smoothness loss the
most (i.e., whose label and feature vectors best reconstruct
the label and feature vectors of image i), updates residual
errors and repeats to select the next best candidate, until
k candidates are chosen. Let Ni denote the set of similar
images chosen so far. We compute the the optimal similarity
coefficients {ci′,i, c̄i′,i} and the residual errors for the label,
ry , and feature ,rf , as

c∗i′,i = max
(
0, arg min ‖yi −

∑
i′∈Ni

ci′,iAyi′‖22
)
,

c̄∗i′,i = max
(
0, arg min ‖f i −

∑
i′∈Ni

c̄i′,if i′‖22
)
,

ry = yi −
∑
i′∈Ni

c∗i′,iAyi′ ,

rf = f i −
∑
i′∈Ni

c̄∗i′,if i′ .

(5)

For each image i′ not in the current set Ni, we compute the
loss L(i)

s (Ni ∪ {i′}) and then select the best i′ for which

we have the minimum loss function. To do so, we fix the
similarity coefficients for Ni and compute

L(i)
s (Ni ∪ {i′}) = min

ci′,i
λy‖ry − ci′,iAyi′‖22

+ λf‖rf − c̄i′,if i′‖22
(6)

We select the image i′ that achieves the minimum loss func-
tion, i.e., s = arg mini′ L(i)

s (Ni ∪ {i′}). For each i′, we
compute the closed-form of (6) by setting the derivative
with respect to ci′,i and c̄i′,i to zero,

∂L(i)
s (Ni ∪ {i′})
∂ci′,i

=
∂‖ry − ci′,iAyi′‖22

∂ci′,i
= 0,

(Ayi′)
T
(
c∗i′,iAyi′ − ry

)
= 0,

=⇒ c∗i′,i =
〈ry,Ayi′〉
‖Ayi′‖22

.

(7)

Similarly, we obtain the optimal value for c̄i′,i as

c̄∗i′,i =
〈f i′ , rf 〉
‖f i′‖22

. (8)

Substituting (7) and (8) into (6), we can compute the opti-
mal loss function for any given i′,L(i)

s (Ni ∪ {i′}) as

λy‖ry −
〈rc,Ayi′〉
‖Ayi′‖22

(Ayi′)‖22 + λf‖rf −
〈f i′ , rf 〉
‖fi′‖22

f i′‖22

= λy

( 〈ry,Ayi′〉2‖Ayi′‖22
‖Ayi′‖42

− 2
〈ry,Ayi′〉2

‖Ayi′‖22
+ ‖rc‖22

)
+ λf

( 〈rf ,f i′〉2‖f i′‖22
‖f i′‖42

− 2
〈rf ,f i′〉2

‖f i′‖22
+ ‖rf‖22

)
= −λy

〈ry,Ayi′〉2

‖Ayi′‖22
− λf

〈rf ,f i′〉2

‖f i′‖22
+ constant.

(9)

Thus, we select the best next sample in Algorithm 2 via

s = arg max
i′

λy
〈ry,Ayi′〉2

‖Ayi′‖22
+ λf

〈rf ,f i′〉2

‖f i′‖22
. (10)

4.2. Speeding up Training

The line 4 of Algorithm 2 in the main paper requires
comparing the residual vectors with label vector and fea-
ture vector of every image. For large datasets, such as Open
Images or MS-COCO, where there is a lot of redundancy
in images, we could significantly reduce the computational
time of this step by using a subset of images, obtained using
random sampling or subset selection techniques. In our ex-
periments, we construct the smaller dictionary by randomly
selecting, for each label in the training set, 10 images that
contain that label. Thus, the dictionary for Open Images



and MS-COCO have the sizes of 50, 000 and 10, 000, re-
spectively (we used the whole CUB dataset since there are
only 11, 000 images in the dataset). This simple strategy
speeds up the training while improving the state-of-the-art
results, as shown in the paper.

4.2.1 Complexity Analysis
For the Joint Nonnegative OMP in Algorithm 2 of the main
paper, the dominant complexity cost of the algorithm is to
find similarities (line 4) and solve the non-negative least
squares (line 9 and 10). Let NS be the size of the dic-
tionary used to find similar images and let l and f be, re-
spectively, the dimension of yi and f i. When the search
for similar images is performed on the dictionary of size
NS , the complexity is O(NS(l + f)). On the other hand,
solving non-negative least squares has the complexity of
O(k3 + k2(l+ f)). Finding all k similar images thus takes
O(NSk(l+f)+k4+k3(l+f)). WithNS � N , as is in our
experiments on the Open Images and MS-COCO datasets,
the complexity of the Joint Nonnegative OMP for one image
would beO(1) in the size of the dataset. Thus, finding sim-
ilarities for all images has O(N) complexity. Note that (1)
is optimized in a mini-batch fashion, where we iteratively
construct images similarity for a small batch of data. Thus,
we have low memory complexity, O(B) with B being the
size of the minibatch, in terms of the size of the training
data in each iteration.
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