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Abstract

We study the problem of multi-label zero-shot recogni-
tion in which labels are in the form of human-object interac-
tions (combinations of actions on objects), each image may
contain multiple interactions and some interactions do not
have training images. We propose a novel compositional
learning framework that decouples interaction labels into
separate action and object scores that incorporate the spa-
tial compatibility between the two components. We combine
these scores to efficiently recognize seen and unseen inter-
actions. However, learning action-object spatial relations,
in principle, requires bounding-box annotations, which are
costly to gather. Moreover, it is not clear how to generalize
spatial relations to unseen interactions. We address these
challenges by developing a cross-attention mechanism that
localizes objects from action locations and vice versa by
predicting displacements between them, referred to as re-
lational directions. During training, we estimate the rela-
tional directions as ones maximizing the scores of ground-
truth interactions that guide predictions toward compatible
action-object regions. By extensive experiments, we show
the effectiveness of our framework, where we improve the
state of the art by 2.6% mAP score and 5.8% recall score
on HICO and Visual Genome datasets, respectively.1

1. Introduction
Multi-label learning is the important yet challenging task

of recognizing all labels in an image with applications in
human-computer interaction, robotics, assistive technolo-
gies and surveillance systems. Due to the high cost of col-
lecting training samples for all possible labels, multi-label
zero-shot learning aims to recognize unseen labels that do
not have training images [1, 2, 3]. However, the majority of
existing works have focused on the case where each label is
a simple concept (e.g., an object) and have tired to capture
inter-label dependencies (e.g., co-occurrences of objects)

1Code is available at https://github.com/hbdat/iccv21_
relational_direction.

Figure 1: Conventional multi-label zero-shot recognition (top) assumes
independence between action and object components in interaction labels,
hence, cannot distinguish between objects in background (red) and in in-
teractions (yellow). Our method (bottom) leverages relational directions to
guide predictions toward compatible objects and actions.

for more effective recognition. On the other hand, richer
representation and description of images require more com-
plex labels. Human-object interactions are one such im-
portant form of labels, where each label describes an ac-
tion performed on an object (e.g., ‘holding cup’ or ‘remov-
ing wheel’) [4, 5, 6, 7, 8]. However, existing multi-label
learning works ignore intra-label dependency, which is the
spatial relation between the action and the object within an
interaction label. This leads to a lack of ability to distin-
guish between objects in backgrounds and in interactions,
see Figure 1 and poses challenges to generalization to un-
seen interactions. The work in [9] made the first attempt in
generalizing multi-label learning to human-object interac-
tion (HOI) recognition in the zero-shot setting, where some
interactions do not have training images. Our paper makes
advances on this task by capturing spatial relations among
actions and objects (intra-label dependencies) to enhance
seen and unseen interaction recognition without requiring
bounding-box of locations of actions and objects in images.

Prior Works and Challenges. Most multi-label learning
works take advantage of label correlations to regularize pre-
dictions [10, 11, 12, 13]. To further enhance the perfor-
mance, [14, 15, 16] use attention mechanisms to extract
discriminative visual features of labels. While [17, 18, 19]
predict attention regions recurrently, [20, 21, 22, 7] propose
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specialized attention modules for object and action labels.
However, these works assume that every label has training
samples, therefore cannot generalize to unseen labels.

A few works have addressed multi-label zero-shot recog-
nition by exploiting semantic information overlap between
seen and unseen labels. [23] proposes a nonlinear embed-
ding between visual features and label semantics, while
[24, 2] employ external knowledge in the form of label
graphs. Recently, [3] has proposed a shared attention
mechanism among labels to effectively learn unseen labels.
While these methods can be extended to address recognition
of interaction labels instead of simple labels, they do not
capture spatial dependencies between actions and objects in
interactions, which as we show leads to low performance.

To handle unseen interactions, [9] proposed to cap-
ture image context for HOI prediction. However, the ap-
proach ignores discriminative spatial relations between ac-
tions and objects, necessary to determine whether objects
are being interacted with by actions. Thus, recent works
[25, 26, 27, 28, 29] detect human and object bounding boxes
to determine their spatial compatibility. However, these
works require expensive bounding-box supervision of hu-
mans and objects from seen interaction labels and are diffi-
cult to scale to thousands of interaction labels.

Paper Contributions. To address the above limitations, we
propose a compositional multi-label zero-shot interaction
learning framework that incorporates action-object spatial
dependencies in interactions and does not require expensive
bounding-box annotations. To do so, we propose a cross-
attention model that learns relational directions, which are
expected displacements between actions and their corre-
sponding objects, to measure their compatibilities. Our
framework has several advantages over the state of the art:

– To learn action-object spatial relations, we design a novel
cross-attention mechanism, that estimates distributions of
relational directions for localizing objects/actions in inter-
actions. Cross-attention is differentiable, which enables its
efficient training by backpropagating gradients from inter-
action scores without requiring bounding-box annotations.
The object/action scores computed according to relational
directions measure the spatial compatibility between object
and action in interaction labels.

– We use the observation that an action-object spatial con-
figuration often depends on the action type. For example,
the object location for the action ‘sit’ is below the action
location regardless of the object (e.g., chair, bed), see Fig-
ure 1. Thus, we condition our cross-attention predictions on
action types in each interaction label, which enables gener-
alization to unseen labels with similar actions.

– Instead of relying on costly bounding-box supervision,
we leverage the point-wise localization ability of the visual
attention on actions and objects in interaction labels, which

can generalize to unseen actions and scale to thousands of
labels in the Visual Genome dataset.

2. Related Works
Multi-label Learning addresses recognition of all con-
cepts, such as action, object and attribute labels, in an image
[30, 31]. Although it can be addressed by learning a binary
classifier for each label [32], this naive approach performs
poorly on many labels with insufficient training samples
[10, 33]. Thus, the majority of multi-label learning works
aims at capturing label dependencies to share their informa-
tion [34, 11, 12, 13] via label embedding [35, 36], graph
neural networks [10, 37, 38, 39, 40], recurrent networks
[31, 41] and attention mechanisms [17, 18, 19]. However,
they require training samples of every label and cannot rec-
ognize unseen labels without training samples.

Zero-Shot Learning aims at recognizing unseen concepts
without training samples [42, 43, 44, 45, 46, 47, 48, 49] by
leveraging label semantics. Some works [50, 51, 52, 53, 54]
further use temporal information to recognize unseen ac-
tions in videos. However, most works can only recognize a
single unseen label per image. [1, 55, 56, 2] extends zero-
shot learning to the multi-label setting. Recently, [3] pro-
poses to share spatial information between labels via atten-
tion maps to focus on unseen labels without bounding-box
supervision. However, these works target only simple ac-
tion/object labels, thus do not model action-object spatial
relations in interaction labels. Although [9, 57, 58] recog-
nize interaction labels, they do not capture and transfer spa-
tial relation knowledge from seen to unseen interactions.

Spatial Relations in Human-Object Interaction, which
are the relative positions between actions and objects in in-
teractions [59, 60, 61, 62, 63], are robust to appearance vari-
ations in interactions, hence, have been shown to improve
HOI recognition. Thus, recent works focus on detecting
humans and objects in actions by relying on bounding-box
annotations for each interaction label [6, 64, 65, 66, 67, 68].
[69, 70, 71, 72] convert predicted bounding boxes into bi-
nary images to measure their interactiveness scores, while
[8, 73, 74] regress object locations from human regions or
center of both human and object regions [75]. To reduce
annotation costs, [26, 76, 29, 28, 27, 25] propose to de-
tect unseen interaction labels based on visual-spatial infor-
mation from seen labels. However, these methods require
bounding-box annotations to detect interactions. Orthogo-
nal to these works in HOI detection, our method focuses
on the recognition task of unseen interaction labels using
solely image-level supervision.

Weakly-Supervised Localization [77, 78, 79] has recently
gained traction due to the high cost of bounding-box anno-
tations needed to train object detectors [80, 81]. [82, 83, 84]
discovers that activations of CNNs can be analyzed to infer



Figure 2: Given an input image I , we first estimates action and object locations, la, lo using attention mechanisms. Our proposed cross-attention
component then estimates the relational directions from action to object, δo←a, and from object to action, δa←o. Action and object scores, sa, so, are
computed based on attention locations and relational directions to capture spatial relations between actions and objects. We compute the interaction score,
sa,o, as the sum of action and object scores.

locations of objects in images. Recent works [79, 85, 86]
focus on capturing the full spatial extents of objects by reg-
ularizing predictions to prevent localizing only the most dis-
criminative parts. However, these works cannot localize
both actions and objects in interaction labels. Moreover,
they require at least image-level supervision for localiza-
tion, thus cannot generalize to unseen interactions.

3. Compositional Learning of Unseen Interac-
tion Labels using Spatial Relations

In this section, we develop a compositional learning
framework for multi-label zero-shot HOI recognition that
captures spatial relations. We assume training images are
annotated with their ground-truth list of interaction labels
without having bounding-box regions of humans or objects.

3.1. Problem Settings

Let A and O denote the sets of human action and object
labels, respectively. The Cartesian product of the two sets,
A × O , {(a, o)| a ∈ A, o ∈ O}, corresponds to all pos-
sible interaction labels. Throughout the paper, we use the
term interaction component to refer to an action or object.
In the multi-label zero-shot interaction learning, we have
two sets Cs, Cu ⊂ A×O, where Cs corresponds to seen in-
teraction labels that have training samples and Cu denotes
unseen interaction labels that lack training samples. Let
(I1,Y 1), . . . , (IN ,Y N ) be N training samples, where Ii
denotes the training image i and Y i ∈ {0, 1}|A|×|O| en-
codes its ground-truth interactions. An image may contain
one or multiple interactions, e.g., the image in Figure 1 con-
tains ‘sit + chair’ and ‘type + laptop’.

The goal of multi-label zero-shot HOI recognition is to
classify both seen and unseen interaction labels (a, o) ∈
Cs ∪ Cu given only training samples from Cs. Unseen in-
teraction labels correspond to either combinations of seen
actions and objects but in a novel way not present in train-

ing data or combination of actions and objects at least one
of which is unseen. We use word embeddings of actions
and objects, {vta}a∈A, {vto}o∈O, to handle recognition of
unseen interaction labels by leveraging semantic similari-
ties between unseen and seen interaction components.

3.2. Proposed Framework

To address the problem of multi-label zero-shot HOI
recognition, we develop a compositional framework in
which the interaction score sa,o between an action a and
an object o is decomposed as the sum of scores of the ac-
tion, sa, and the object, so (see Figure 2). As we show,
this allows us to transfer the learned knowledge from seen
actions and objects to unseen interaction labels.

To compute the action and object scores, it is necessary
to localize them in images. Thus, we use two attention mod-
ules that, in a weakly-supervised setting, learn to select rel-
evant action and object regions to extract attention features.
We use the attention features to compute action and object
visual scores. However, given that an image may have mul-
tiple actions and objects, combining visual scores cannot
capture which actions and objects interact with each other.

Leveraging the spatial dependencies between interaction
components, we propose a novel cross-attention mechanism
to learn two relational directions: one from action to object,
which predicts the location of the object based on the action
information, and one from object to action, which predicts
the location of the action based on the object information.
We use these directions to compute relational features and
subsequently relational scores for the actions and objects.
Finally, we compute the action/object score as the combina-
tion of visual and relational scores, which allow us to more
effectively recognize interaction labels. For example, when
an action and object exist in an image, hence, have high vi-
sual scores, but do not interact, the relational scores would
be low/negative, thereby, reducing the interaction score. On
the other hand, an action or an object in interaction whose



attention feature is not sufficiently informative (e.g., due to
occlusions) will have low visual scores, while the relational
features can capture their presence by producing positive
relational scores, which increases the interaction score.

3.2.1 Learning Visual Representations of Actions and
Objects via Attention Models

To effectively transfer knowledge from seen to unseen in-
teraction labels, we use a compositional learning paradigm.
We decompose learning the interaction model into learn-
ing action and object models, the combinations of whose
outputs allows us to recognize seen and unseen interac-
tion labels. Given the lack of bounding-box interaction an-
notations and to learn action and object features that en-
code information from relevant image regions, we use soft-
attention [15, 16, 42] to select regions according to a query
vector v. Let {fr}Rr=1 be the region features of an image
I , which is divided into R equal-size regions. We compute
the attention weights,

α(fr,v) =
exp(vTW αfr)∑
r′ exp(v

TW αfr
′
)
, (1)

where W α is a learnable matrix that measures the compat-
ibility between the region r of the image and query vector
v. Thus, α indicates the importance score of each region,
normalized by the softmax operation, with respect to v.

We use two attention modules, α1(·) and α2(·)
parametrized byW α

1 andW α
2 , to select regions and extract

features for actions and objects, respectively,

ha ,
∑
r

α1(f
r,va)f

r, ho ,
∑
r

α2(f
r,vo)f

r. (2)

Here, ha and ho are the attention features for action a and
object o, respectively, by aggregating image region features
using the attention scores. Query vectors va,vo of actions
and objects are used to guide the two attention modules.

Visual Queries. To compute the query vectors, we pro-
pose to modify the word embeddings of actions {vta} and
objects {vto} learned from textual corpus (e.g., Wikipedia)
into suitable visual queries as

va = vta + r(vta), vo = v
t
o + r(vto), (3)

where r(·) is a neural network computing the modifications
needed to construct visual query vectors va,vo from their
word embedding vta,v

t
o. By using the same r(·) for both

action and object queries, we effectively share knowledge
between interaction components to refine word embeddings
into suitable queries instead of learning from scratch.

Naive Approach. Given the attention features for actions
and objects, a naive approach to multi-label HOI recogni-
tion is to compute the score of interactions as the sum of

visual scores of actions ea(ha) and objects eo(ho) from vi-
sual attention features,

sa,o = ea(ha) + eo(ho), (4)

ea(h) , v
>
aW

e
1h, eo(h) , v

>
oW

e
2h, (5)

where W e
1,W

e
2 are embedding matrices to compute the

compatibility of action and object attention features with the
query vectors va,vo. Without incorporating any relations
between actions and objects, (4) effectively assumes actions
and objects appear independently in an image, thus, cannot
distinguish between background objects and objects in in-
teractions (see Figure 1). In the next section, we develop
a novel cross-attention mechanism that estimates relational
directions and scores to capture spatial dependencies be-
tween interaction components while maintaining their com-
positionality for efficient prediction.

3.2.2 Modeling Spatial Relations between Actions and
Objects with Cross Attention

To capture dependencies between interaction components,
we use the observation that action and object in an inter-
action label follow a specific spatial configuration, which
often depends on the action type. For example, object lo-
cation for the action ‘sit’ must be below the action location
regardless of the object type, e.g., ‘chair’, ‘bed’ (see Figure
1). Thus, we add to our model a cross-attention component
that predicts the location of the object/action based on the
location of the action/object using the action query vector.
We will use the cross-attention locations to build visual re-
lational features of actions and objects, which we then use
in conjunction with (5) to compute interaction scores.

Our first step is estimating action and object locations
based on image regions selected by the attention models,

la ,
∑
r

αa(f
r,va)l

r, lo ,
∑
r

αo(f
r,vo)l

r, (6)

where lr is the 2D coordinate of the center of region r and
la, lo denote centers of actions and objects, respectively.
Notice that we use the sum of locations, weighted by at-
tention scores, as it is fully differentiable for training.

Next, we use the information of action a to predict the lo-
cation of object o, denoted by lo←a, and use the information
of object o to predict the location of action a, denoted by
la←o. To do so, we learn relational directions, δo←a, δa←o,
between the two components. More specifically, given at-
tention features and locations of the action (ha, la) and ob-
ject (ho, lo), our cross attention models the displacement
from a to o and vice versa using Gaussian distributions,

δo←a,Σo←a = g1

(
ha, la|va

)
, lo←a = la + δo←a, (7)

δa←o,Σa←o = g2

(
ho, lo|va

)
, la←o = lo + δa←o, (8)



where g1(·), g2(·) are two neural networks whose outputs
are the estimated mean (δ) and covariance (Σ) of displace-
ments. Notice that the expected location lo←a of object
o using action a information is the sum of action location
la and the mean displacement from action to object δo←a
(similarly for object to action). Compared to directly pre-
dicting absolute locations of actions and objects, relational
directions δo←a, δa←o have the advantage of capturing rel-
ative visual relationships such as “on top” or “in front of”.

Remark 1 Relational directions depend on action types,
encoded in va, but not on object types, since action types
mostly dictate relative locations of actions and objects in
interactions. This enables our framework to transfer knowl-
edge of relational directions from seen to unseen interaction
labels using similarity of actions regardless of object types.

Given the expected locations, lo←a, la←o, we compute
relational features of actions and objects from which we
compute relational scores. We assume when an interac-
tion labels of a and o occurs, given la, the relational di-
rection δo←a would point to the image region containing o,
hence, producing a high object score eo (similarly for action
a). On the other hand, the expected locations for unrelated
actions and objects would be irrelevant regions that have
small or even negative scores. To compute the relational
visual features, we weight image region features using the
Gaussian probability of their coordinates lr based on es-
timated parameters for actions (la←o,Σa←o) and objects
(lo←a,Σo←a) as,

ho←a ,
∑
r

pg(l
r|lo←a,Σo←a)f

r, (9)

ha←o ,
∑
r

pg(l
r|la←o,Σa←o)f

r, (10)

where pg(·) is the Gaussian density function. Here,
ho←a,ha←o denote the relational features from which we
compute the relational scores for objects and actions as
eo(ho←a) and ea(ha←o), respectively, using the embed-
ding functions in (5). Notice that the covariance matri-
ces Σo←a,Σa←o capture the uncertainty of relational di-
rections, where large variance reduces region probabilities
leading to small relational scores. Thus, our framework
down-weights uncertain predictions. Moreover, inferring
the distributions of δo←a, δa←o makes our framework dif-
ferentiable, since the influence of each image region with
respect to relational directions changes smoothly, as op-
posed to predicting a specific image region.

3.2.3 Interaction Label Prediction via Visual Repre-
sentations and Spatial Relations

To produce the final prediction, we combine the rela-
tional scores ea(ha←o), eo(ho←a) with the visual scores

ea(ha), eo(ho) to compute the overall scores for actions,
denoted by sa, and objects, denoted by so,

sa(ha,ha←o) = ea(ha) + w1ea(ha←o), (11)
so(ho,ho←a) = eo(ho) + w2eo(ho←a), (12)

where w1, w2 are learnable scalars adjusting the relative ef-
fect of the two terms. Here, the relational scores modulate
the overall scores according to action-object spatial rela-
tions. When the relational directions point towards the right
regions of the action/object, the relational scores would be
high, increasing the overall scores. Otherwise, for an in-
compatible (action, object) pair, the relational score would
be small or negative, suppressing the overall scores.

Finally, we compute the interaction score as the sum of
the overall action and object scores,

sa,o , sa(ha,ha←o) + so(ho,ho←a). (13)

This allows us to maintain the compositional structure be-
tween actions and objects and recombine the learned knowl-
edge to predict the scores of unseen interaction labels.

Loss Function. To train all components of our framework,
for each training image, we use the binary cross-entropy
loss between interaction scores sa,o and their corresponding
ground-truth annotations ya,o,

L , −
∑

(a,o)∈Cs

ya,o log(σ(sa,o))+ (1− ya,o) log(1−σ(sa,o)),

(14)
and minimize the average loss over training images via
stochastic gradient descent. Here, σ(·) denotes the sigmoid
function converting interaction scores to prediction proba-
bilities. We minimize the loss with respect to parameters of
the action and object models, {W α

i ,W
e
i , gi, wi}2i=1, and

the visual query model, r.

4. Experiments

We evaluate our proposed framework, which we refer to
as Interaction Compass (ICompass), for multi-label zero-
shot HOI recognition on HICO [7] and Visual Genome [59]
datasets. We also analyze the pointwise localization perfor-
mance [83, 3] by measuring whether predicted locations of
actions and objects are within their ground-truth bounding-
boxes, on HICO-DET [70]. Unlike weakly-supervised ob-
ject detection [82, 87, 88], which require training samples
for every label, and zero-shot object detection [89, 90, 91],
which need bounding-box annotations of seen labels, our
setting measures performance of unseen label recognition
without bounding-box supervision and training samples.
We first discuss the datasets, evaluation metrics, implemen-
tation details and baselines. We then present recognition



and localization performances. Finally, we show the effec-
tiveness of the cross-attention for estimating interaction re-
gions and conduct ablation studies to show the necessity of
each proposed component.

4.1. Experimental Setup

Datasets. Following [9], we report the zero-shot recog-
nition performance on HICO [7] and Visual Genome [59]
datasets, which contain images of various interactions be-
tween human and objects. HICO has 38,116 training im-
ages and 9,658 testing images carefully collected for 520
interactions from 117 actions and 80 objects. On the other
hand, Visual Genome is a visual relation dataset consisting
of 520 human actions with 1,422 objects among 21,256 im-
ages. This results in 6,643 interactions for training and 532
interactions having at least 10 samples for reliably evaluat-
ing the performances.

Similar to [9], we divide the action set into two disjoint
sets A,B ⊂ A such that A ∩ B = ∅ and similarly divide
objects into 1, 2 ⊂ O where 1 ∩ 2 = ∅. Given these sets,
we partition interaction labels into 4 sets A1,B1,A2,B2, by
combining actions and objects from their respective sets,
e.g., A1 ⊆ A× 1. We setup two evaluation settings:

(1) Seen interactions: A1∪B2, Unseen interactions: B1∪A2,

(2) Seen interactions: A1, Unseen interactions: B1∪A2∪B2.

Notice that Setting 1 tests the ability to recombine knowl-
edge from seen interactions, since all actions and objects are
observed, while Setting 2 requires to extrapolate to unseen
actions and objects. Due to a large number of interactions,
both datasets contain missing annotations in images, which
are treated as negative labels, similar to [7, 9].

Evaluation Metrics. Following other works on multi-label
learning [7, 9, 3], we measure the mean Average Precision
(mAP) capturing how well a model retrieves relevant sam-
ples for each interaction. We also report the ranking mea-
surement, F1 score, which is the harmonic mean between
the precision and recall of top-10 predictions in each im-
age. Notice that mAP compares predictions across different
images while F1 distinguishes between interactions within
the same image, hence, these measurements offer comple-
mentary performance information.

Baselines. We compare with GCNCL [9], which exploits
external knowledge graphs based on WordNet between ac-
tions and objects to construct unseen interaction classifiers.
Following [9], we further compare with methods using only
image-level labels. Thus, we adapt multi-label zero-shot
learning works [92, 23, 3] to recognize interaction labels
by predicting action and object scores and adding them into
corresponding interaction scores. To be specific, we em-
ploy DEVISE [92], which learns linear embedding spaces,

and Fast0Tag [23], which constructs a nonlinear embed-
ding function to measure the compatibility between image
features and word embeddings of actions or objects. We
also use LESA [3], as the state-of-the-art multi-label zero-
shot learning model, which learns to share attention among
related action/object labels.

To show the importance of visual query refinement and
spatial relations, we consider a Dual Attention base-
line, consisting of two independent soft-attention modules
for actions and objects using word embeddings as queries
without learning spatial relations. As an attempt to cap-
ture action-object dependencies, we construct a Combined
Attention baseline, which extends Dual Attention
by predicting dependency scores from the concatenation of
visual features ha,ho and locations la, lo, parametrized by
a neural network. Since Combined Attention heav-
ily relies on the correctness of both action and object atten-
tion predictions in each interaction to compute dependency
scores, it will not be robust against incorrect localization in
either components. Our method only depends on either ac-
tion or object locations to infer spatial relations and captures
prediction uncertainties, thus can also correct localization
errors (see the supplementary materials).

Implementation Details. To extract region features for at-
tention mechanism, we use the feature map from the last
convolutional layer of a pretrained ResNet-152 whose size
is W × H × 2048 and treat it as a set of features from
W ×H regions. We pad input images, such that they have
equal widths and heights, and reshape them into 544× 544
size and 17×17 image regions, which achieves good trade-
off between performances and memory consumptions. For
each region, we assign a unique 2D coordinate lr in the
range of [1, 17] × [1, 17]. We parametrize g1(·), g2(·) in
cross attention as two neural networks with one hidden layer
of size 300. We normalize relational directions within im-
age ranges and predict positive diagonal matrices for the
covariance matrices. Similarly, for the visual query, r(·) is
model as a neural network with one hidden layer of size 60.
We extract the semantic vectors {vta}a∈A, {vto}o∈O using
the GloVe model [93] trained on Wikipedia articles. We
implement all methods in PyTorch and optimize using RM-
Sprop [94] with its default setting, learning rate 0.001 and
batch size of 32 on 10 epochs on all datasets.

4.2. Experimental Results

Multi-Label Zero-Shot HOI Recognition. We report per-
formances on only unseen interaction labels (Unseen), and
on both seen and unseen interaction labels (All) correspond-
ing to, respectively, zero-shot and generalized zero-shot set-
tings. Table 1 shows F1 scores at top-10 predictions and
mAP scores for all methods in both Setting 1 (A1 ∪ B2 set-
ting) and Setting 2 (A1 setting). From the results, we make
the following conclusions:



Method Seen
Interactions

HICO Visual Genome
Unseen All Unseen All

R@10 F1@10 mAP R@10 F1@10 mAP R@10 F1@10 mAP R@10 F1@10 mAP

GCNCL* [9] A1 ∪ B2 - - 17.0 - - 21.4 - - 5.4 - - 6.6
A1 - - 7.5 - - 11.9 - - 2.4 - - 4.1

ICompass (Ours)* A1 ∪ B2 78.1 12.7 19.8 76.1 25.2 25.9 52.0 5.7 6.9 47.5 10.2 7.8
A1 38.2 9.8 8.9 43.1 14.2 14.7 25.8 4.0 3.4 29.7 6.4 4.7

DEVISE [92] A1 ∪ B2 54.4 8.8 10.7 59.0 19.5 16.9 35.1 3.9 3.0 31.5 6.8 3.7
A1 15.8 4.1 3.7 22.6 7.5 8.1 6.3 1.0 1.4 14.0 3.0 2.1

Fast0Tag [23] A1 ∪ B2 76.8 12.5 19.9 75.8 25.1 26.2 49.1 5.4 7.1 43.9 9.5 8.0
A1 41.5 10.7 8.7 48.1 15.9 14.8 25.1 3.8 3.9 33.3 7.2 5.1

LESA [3] A1 ∪ B2 71.1 11.5 21.8 75.0 24.8 28.3 41.6 4.6 6.9 43.2 9.3 8.3
A1 29.8 7.7 9.8 40.1 13.3 16.2 7.7 1.2 2.9 14.7 3.2 4.4

Dual Attention
A1 ∪ B2 71.2 11.6 19.1 73.9 24.5 25.8 51.2 5.7 6.1 47.8 10.3 7.5

A1 32.5 8.4 9.1 41.4 13.7 15.1 16.4 2.5 3.0 28.1 6.1 4.1

Combined Attention
A1 ∪ B2 71.1 11.5 14.3 72.0 23.8 22.1 41.9 4.6 4.9 40.8 8.8 5.9

A1 27.7 7.1 7.7 38.2 12.6 13.0 18.6 2.9 2.6 28.3 6.1 3.6

ICompass (Ours)
A1 ∪ B2 82.7 13.4 24.4 81.6 27.0 30.4 57.0 6.3 7.8 52.1 11.2 8.8

A1 42.0 10.8 10.8 46.6 15.4 17.2 26.8 4.1 4.2 31.4 6.8 5.4

Table 1: Multi-label zero-shot HOI recognition performance on HICO/Visual Genome. * indicates 224× 224 image resolution input.

Method Seen
Interactions

Action Object Action & Object
A1 A2 B1 B2 All A1 A2 B1 B2 All A1 A2 B1 B2 All

DEVISE [92] + CAM [84] A1 ∪ B2 9.7 6.0 9.6 10.8 9.0 11.6 11.6 12.6 18.5 13.6 4.6 4.2 4.6 7.1 5.2
A1 5.4 3.9 3.4 2.3 3.8 8.3 2.9 5.0 2.1 4.6 3.1 1.5 1.6 0.9 1.8

LESA [3] A1 ∪ B2 23.6 19.9 18.8 21.8 21.0 24.8 26.3 19.4 25.6 24.0 13.3 15.2 9.8 13.5 13.0
A1 23.6 4.0 18.8 1.3 11.9 25.0 4.0 18.8 1.6 12.4 12.9 2.6 10.2 1.0 6.7

Dual Attention
A1 ∪ B2 21.0 16.9 20.6 22.3 20.2 21.6 20.6 20.0 24.0 21.5 10.9 12.5 11.6 14.1 12.3

A1 21.6 6.8 15.4 1.4 11.3 23.4 3.4 13.6 0.5 10.2 11.7 2.6 7.7 0.4 5.6

Combined Attention
A1 ∪ B2 17.9 6.7 20.3 19.8 16.2 13.2 9.3 12.0 12.9 11.9 5.9 3.7 6.7 6.7 5.7

A1 17.2 6.5 11.8 2.6 9.5 12.4 2.5 7.9 0.9 5.9 5.5 1.9 4.0 0.8 3.0

ICompass (Ours)
A1 ∪ B2 28.6 23.5 28.4 28.1 27.2 32.4 29.7 25.9 33.6 30.4 17.5 18.4 15.9 19.6 17.9

A1 28.0 6.1 19.8 1.1 13.7 34.4 5.8 20.0 1.1 15.3 15.9 4.0 11.3 1.0 8.0

Table 2: Zero-shot HOI localization (mAP) performance on images having the target interaction labels in the HICO-DET dataset.

– In GCNCL setup with input size of 224× 2242, we signifi-
cantly outperform GCNCL on both datasets, for both settings
1 and 2 and for both Unseen and All interaction predictions.
Thus, without decoupling visual features of actions and ob-
jects, GCNCL is unable to capture and transfer information
from seen to unseen interaction labels even when relying on
external knowledge. In the higher image resolution setup
of 544 × 544, we further boost our performances by 3.6%
and 1.9% on HICO in A1∪B2 and A1 settings, respectively,
for unseen mAP as our method can attend to finer image re-
gions. We use this resolution in the remaining experiments,
as it also benefits other baselines, for fair comparison.

– On unseen interactions, our method surpasses the state of
the art on HICO not only by 2.6% and 1.0% mAP scores,
but also by 5.9% and 0.5% recall scores on A1∪ B2 and A1
settings, respectively, showing that most of our confident
predictions are accurate. To evaluate on Visual Genome,
due to its missing and noisy labels, we use recall, which
does not penalize predictions of unannotated interactions
compared to mAP. We achieve at least 5.8% (A1 ∪ B2 set-
ting) and 1.7% (A1 setting) recall improvements and the
best F1 and mAP performances.

– On all interactions, we improve mAP scores by 2.1%
(1.0%) on HICO for A1 ∪ B2 (A1) setting and achieve
comparable performances to the state of the art on Visual
Genome. Although Fast0Tag achieves high ranking per-

2As we are unable to obtain the code from authors, we use their reported
mAP scores to ensure reporting their best performances.

formances on all interactions, its low unseen performances
indicates the baseline mostly overfits to seen interactions
without generalizing to unseen interactions.

Zero-Shot HOI Localization. To further analyze the per-
formance, we propose to measure the localization perfor-
mances for each interaction label on only images having the
target label following [95], please prefer to the supplemen-
tary materials for evaluation on all images. We consider top-
10 predictions in each image as positive predictions and,
using mAP scores [83, 3], we measure whether the ground-
truth labels are within top predictions and their predicted
locations3 are within the ground-truth bounding boxes on
HICO-DET dataset [70]. We evaluate action localization,
object localization, and action-object localization where a
model need to correctly localize both components. Here,
we use human bounding boxes as a proxy for locations of
actions which are performed by humans. Table 2 shows the
results, which support the following conclusions:
– Overall, most methods localize objects better than ac-
tions, while action-object localization is the most difficult
task. In A1∪B2 setting, our method achieves the best local-
ization performances on both seen and unseen interactions
compared to the state of the art, resulting in 6.2%, 6.4%
and 4.9% all improvement across action, object and action-
object localization, respectively.
– In the A1 setting, most methods perform better at local-

3We use Class Activation Map [84] to locate actions/objects for DE-
VISE which lacks localization ability.



Figure 3: Visualization of object/action attention maps and object location distributions estimated by cross attention for unseen interaction labels.

Figure 4: Left: Object localization score of cross-attention. Right:
Changes in learnable weights, w1, w2, for relational scores across training
iterations. Experiments are performed in A1 ∪ B2 setting on HICO-DET.

izing interaction labels of seen than unseen objects, which
shows that object features are highly discriminative for rec-
ognizing interactions. Overall, our methods significantly
improve mAP scores by 1.8%, 2.9%, 1.3% on action, ob-
ject and action-object pointwise localization, respectively.
– Combined Attention has low performance since it
naively combines action and object predictions without ac-
counting for localization errors, thus propagates the errors
and degrades the performance. The modest performance of
Dual Attention shows the importance of capturing ac-
tion/object spatial relations in addition to visual attention.

Effectiveness of Cross Attention. To show that objects
can be located from actions’ information, we compare
pointwise object localization performances (mAP) of cross-
attention, lo←a, shared attention in LESA and ICompass,
shown in Figure 4 (left). Compared to uniformly select
regions (Random Guess), cross attention is significantly
better at object localization, thus verifies the effectiveness of
using action information to estimate relational directions.

We also visualize the learnable weights for relational
scores (w1, w2) across training iterations in Figure 4 (right).
During training, our model gradually uses relational di-
rections from actions (w2 = 0.8) and suppresses direc-
tions from object (w1 = 0.0). As objects do not signifi-
cantly change in interactions, e.g., ‘cup’ remains visually
unchanged under ‘pouring into’ or ‘drinking from’, their
features are unreliable for predicting spatial relations.

Ablation Studies. We conduct ablation study of the recog-
nition performance (mAP) on the HICO dataset to mea-
sure the improvements when adding each component of
our framework compared to LESA. As shown in Figure
5, we observe improvements using our visual queries (see

Figure 5: Multi-label zero-shot HOI recognition improvements over
LESA on HICO when adding each component of our method.

the supplementary materials for query visualization), which
shares knowledge between object and action queries, while
LESA learns them independently. Cross-attention signifi-
cantly boosts the performance by 1% in A1∪B2 setting and
doubles the improvements in A1 setting on both unseen and
all interactions. This shows our method succeeds in trans-
ferring knowledge from seen to unseen interactions.

Qualitative results. Figure 3 visualizes attention maps
of actions/objects and distributions of object locations
(lo←a,Σo←a) from cross attention on HICO-DET dataset.
Our method can focus on relevant regions of different ac-
tions, such as ‘ride’ and ‘pet’, to recognize multiple unseen
interaction labels in the A1 ∪ B2 setting. Moreover, cross-
attention successfully attends to objects corresponding to
each action. In A1 setting, we generalize to the unseen ac-
tion ‘hold’ to produce a low relational score for ‘ball’ whose
location is incompatible with our cross-attention prediction.

5. Conclusions
We proposed a compositional multi-label zero-shot inter-

action learning framework that decouples and recombines
action and object knowledge to recognize seen/unseen in-
teractions. We introduced a novel cross-attention model that
captures spatial relations between actions and objects to de-
termine their compatibility without bounding-box annota-
tions. Extensive experiments on HICO and Visual Genome
datasets demonstrated our ability to recognize unseen in-
teractions, provide estimation of interaction locations and
generalize to interaction labels with unseen actions.
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