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Abstract. We address the problem of unsupervised procedure learning
from instructional videos of multiple tasks using Deep Neural Networks
(DNNs). Unlike existing works, we assume that training videos come
from multiple tasks without key-step annotations or grammars, and the
goals are to classify a test video to the underlying task and to localize its
key-steps. Our DNN learns task-dependent attention features from infor-
mative regions of each frame without ground-truth bounding boxes and
learns to discover and localize key-steps without key-step annotations
by using an unsupervised subset selection module as a teacher. It also
learns to classify an input video using the discovered key-steps using a
learnable key-step feature pooling mechanism that extracts and learns to
combine key-step based features for task recognition. By experiments on
two instructional video datasets, we show the effectiveness of our method
for unsupervised localization of procedure steps and video classification.
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1 Introduction

The large number of instructional and everyday activity videos has provided
great resources for automatic procedure learning (APL), which is to learn the
sequence and visual models of key-steps required to achieve a certain task. Pro-
cedure learning can be used to teach autonomous agents perform complex tasks
[33], help humans in achieving tasks [27], or build large knowledge bases of in-
structions. Understanding videos at the scale necessary to build knowledge bases
or assistive robots that handle a large number of tasks requires unsupervised
methods that do not rely on costly to gather annotated videos.

1.1 Prior Work

Over the past few years, we have seen advances on multiple aspects of under-
standing instructions [9, 31,28,1, 26,12, 17,21, 36, 19]. Depending on the type of
supervision, existing works can be divided into three categories. The first group
of works assumes that annotations of key-steps (also referred to as procedure
steps) are given in videos and the goal is to learn how to segment new videos
[36] or anticipate future key-steps [27]. To reduce the costly and unscalable anno-
tation requirement, weakly supervised learning methods [13,22, 3,5, 37] assume
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Fig. 1: We develop a self-supervised procedure learning method for key-step localization
and task classification using a deep network. Our framework uses an unsupervised
subset selection module to self-supervise training of a key-step localization network
(KLN), where both the subset selection and KLN share attention features that focus
on task-related informative regions in video frames. The attention features and output
of KLN will be used in a task-classification network (TCN) that uses a learnable key-
step pooling mechanism to automatically upweight discriminative key-steps.

that each video is accompanied with an ordered or unordered list of key-steps
(subactions) appearing in it, and the goals are to localize the key-steps in videos
and learn a model for each key-step. [31] further reduces the annotation cost
by only marking one frame from each key-step in videos without requiring to
label the selected frames. While removing the stringent requirement of annotat-
ing each frame, the weakly supervised methods still require annotators to watch
each video entirely and provide its (ordered) list of key-steps.

To remove the need for annotation, unsupervised procedure learning meth-
ods have focused on exploiting the structure of videos of the same task in order
to discover and localize key-steps in videos [28,1,26,9,15,10]. Several works
have addressed understanding procedures from narration or text [28,1,17,34,
6]. However, reliably obtaining text from spoken natural language using videos
on the Internet is still challenging, often requiring manual cleaning of the auto-
matic speech recognition results. Moreover, to learn visual models of key-steps,
existing methods assume that the text and visual information are aligned [1, 17,
34], which could be violated in videos, e.g., human narrators first speak about
one or multiple key-steps and then perform the subactions. Thus, to learn reli-
able visual models of key-steps, recent works have focused on learning key-steps
directly from visual data [26,9, 15], using a Mallows model [26], joint dynamic
summarization [9] or clustering and ordering of visual features [15].

Limitations. Existing works on unsupervised procedure learning are limited in
three aspects. First, most methods assume videos of only one task are given,
with the goal of discovering a common procedure as well as the localization of
key-steps in videos [1, 26,9, 15]. This requires running such methods on each task
separately, while it is not clear how to discover the key-steps of a new video that
may belong to any of the tasks.
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On the other hand, despite great success of DNNs for recognition, detec-
tion, captioning, semantic segmentation and tracking, they have not been fully
explored for procedure learning. This comes from the difficulty of the unsu-
pervised problem, which often requires a multi-stage solution with each stage
involving a non-convex problem, e.g., multiple sequence alignment and discrim-
inative clustering [1], temporal embedding, clustering and decoding [15] or sub-
set selection and multiple sequence alignment [9]. Thus, unsupervised procedure
learning based on DNNs, which once learned allows fast and efficient inference
on a test video belonging to one of many possible tasks, remains an important
yet challenging problem to address.

Finally, the majority of existing works on unsupervised procedure learning
lack the ability to learn informative features for key-step discovery, often relying
on precomputed features. Recent works have focused on using narration and
visual data jointly to learn features [19, 18], yet they require access to narrations
and rely on weak alignment between the modalities. In this paper, we focus on
visual data only, motivated by problems such as learning from home activity
videos where users do not explain their actions while performing different tasks.
We make the key observation that in instructional videos, information about a
key-step is often contained in a small region of a frame (e.g., for the key-step
‘unscrew the wheel’ in the ‘change tire’ task, the information is contained in
the region of a frame that contains the lug nuts). Hence, to effectively perform
procedure learning, we need to successfully localize and extract features from
regions in each frame where a key-step is being performed.

1.2 Paper Contributions

We develop a self-supervised procedure learning method from videos of multiple
tasks using Deep Neural Network (DNNs), addressing the above challenges. Un-
like existing works that assume all videos come from the same task, we consider
the more challenging and practical scenario where training videos come from
different tasks without key-step annotations or grammars, and the goals are to
classify a test video to the underlying task and to localize its key-steps. To tackle
the problem, we study a DNN-based framework (see Figure 1) that

— learns task-dependent attention features from informative regions of frames
using a self-attention mechanism trained without bounding box annotations;

— learns to discover and localize key-steps without ground-truth annotations of
key-steps by using an unsupervised subset selection module as a teacher;

— learns to classify a video using a learnable key-step feature pooling mechanism
that extracts and learns to combine key-step based features.

While subset selection does not allow backpropagation of gradients due to
its discrete non-differentiable nature, our framework allows us to learn attention
features for both DNN and subset selection, hence, improving the performance
of both for key-step localization and task classification. In addition, the unsu-
pervised subset selection provides pseudo labels for DNN to learn to localize
key-steps in videos. Our experiments show that once learned, the DNN outper-
forms subset selection in key-step localization, thanks to its higher capacity.
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Remark 1. Our framework can be thought as a teacher-student framework, with
major differences with most existing works [2,11,24,35,20]: i) our teacher is
a non-convex subset selection, which unlike prior work is not first learned and
then fixed; ii) both the teacher (subset selection) and the student (key-step
localization network) share the same attention feature learning module, where
the supervision by the non-differentiable teacher and back-propagating gradient
of loss via the differentiable student, allows to learn better (attention) features
that subsequently improve the performance of both.!

2 Self-Supervised Procedure Learning

Assume we have a training set of videos and their labels {(V, c,)}f_,, where
YV = (yy), ceey y%)) denotes the sequence of feature vectors of the video ¢ with

Ty frames and ygl) denotes the feature vector of the ¢t-th frame. Also, ¢, € A is
the task label of the video ¢, where A is the set of labels of all tasks, e.g., A =
{‘change tire’, ‘jump-start car’, ...}. Given a desired procedure length k, which
is a hyperparameter, our goal is to recover in a test video all frames that belong
to each of the k key-steps and the underlying task label of the video.

2.1 Proposed Framework

We develop a DNN-based method for efficient key-step discovery and video clas-
sification by learning from training videos that do not have key-step annotations
or grammars. To do so, we propose a framework in which the DNN component
that predicts assignments to key-steps is self-supervised by the output of an
unsupervised subset selection module on training videos, while the DNN com-
ponent that predicts the task label is supervised by the ground-truth task labels
of training videos. Moreover, the DNN and unsupervised subset selection use the
same attention features as inputs. This allows us to backpropagate gradients for
the attention module via DNN. More specifically, Our framework consist of the
following components:

— A spatial attention network (SAN) that learns to focus on informative task-
related regions of each frame to extract feature from. The attention mechanism
in our work does not require any ground-truth bounding boxes and is learned
with self-supervision on key-steps and supervision on task labels. As we show
in the experiments, the presence of this component significantly improves the
performance of both DNN and subset selection.

— An unsupervised subset selection component whose inputs are the attention
features of all videos and M latent states learned from features that ideally
capture different key-steps across tasks and background subactions. It then
selects a subset of the latent states as key-steps and finds assignments of video
frames to them, hence localizing key-steps. We use the output of the subset
selection as pseudo labels for training the DNN.

1 A similar idea was used in [4] to train a deep classification network using kmeans.
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— A key-step localization network (KLN) that receives the attention feature of
each frame in a video and outputs an M-dimensional vector for each frame
that corresponds to the probability vector of the frame belonging to each of
the M states. We use the output of the subset selection to provide supervisory
information, i.e., pseudo labels, for key-step localization in KLN.

— A task classification network (TCN) with learnable key-step feature pooling
that uses the attention features and key-step assignment probabilities (i.e.,
input and output of KLN) and predicts the video task label. Our key observa-
tion is that some key-steps (e.g., the ones common across tasks) should be less
emphasized for video classification, while discriminative key-steps (e.g., the
ones more specific to a particular task) should be more emphasized. Thus, we
propose to build M key-step based features and a learnable pooling mechanism
that learns to combine and attend to discriminative key-step based features.

2.1.1 Spatial Attention Network (SAN). We make the observation that
task-related discriminative information about each key-step is contained in spe-
cific regions of a frame, e.g., in the task of ‘changing tire’, for the key-step of
‘loosen lug nuts’, the information is contained in the region of the frame that
contains the lug nuts and the wheel. Thus, we use a spatial attention module
[32,14] that, without costly ground-truth bounding box supervision, learns to
extract features from the most informative regions of a frame.

We divide the frame ¢ of the video ¢, denoted by It(l), into R equal-sized grid
cells, denoted by It(gl), ce It(f])%. Let ygr) = fo (It@r)) be the feature vector of the
region r, extracted using a CNN parametrized by © (see experiments for the

details). Given region features {y(g) R |, the spatial attention module learns to
find the most relevant regions to the underlylng key-step. This is done by finding

an attention feature, fgf), defined as

()
o _ Z ()0 ® exp(ma(y;.,-))
Qr y r y T Qe r) = (1)
sl W)= R ety )

where ;. (yt ,) denotes the weight of selecting the reglon 7. These weights are

computed by a neural network whose outputs mq (yt T) for given inputs {ytz) R’
are normalized by a softmax function across all image regions. The weights are
unknown and the task of the attention module is to find them for an input image.

2.1.2. Subset Selection. The goal of subset selection is to find a small subset
of representative points from a dataset and it has shown promising results for
procedure learning [9, 31, 7, 8]. Here, we use unsupervised subset selection to pro-
vide pseudo key-step labels for the DNN. More specifically, the subset selection
takes attention features of all videos and M learned latent states (corresponding
to key-steps and background subactions across tasks) and selects a subset of the
states as key-steps and finds the assignments of the frames to them.
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Given { fgé)}u, we first run kmeans with M centers to find latent states
X = {x1,...,xy} that capture all key-steps and background subactions. Ide-
ally, videos of the same task would share the same set of key-steps, i.e., there
exists k < M latent states that well represent videos of the same task. Notice
that the set of k representative states for different tasks could have large or
small/no overlap, depending on the similarity between the tasks. During train-
ing, the subset selection module takes the M states in X and the video features,
{ fff)}t,z, for all videos from the same task and selects k out of M centers that
well represent the videos. To do so, we use a clustering-based subset selection
method, where for the video of task a € A, we solve

T
1 ¢
in J(S)E Y = min|fiY - = 2
SQ{IH{I,M} (S) = T tillz%lguft Zill2, )
‘S‘Sk iCp=a -

whose outputs are the k selected states, corresponding to key-steps, and the
assignment of each frame to each key-state. We denote by Tf e{l,..., M}, the
index of the key-state (key-step) assigned to fz(f). This will be used for training
the localization network, which we discuss in the next subsection.

To solve (2), we use a greedy algorithm, by considering an active set I" that
is incrementally grown to select at most k states. Initializing I' = @, at each
iteration, we add the state from X that minimizes the cost function the most
compared to only using I'. More specifically, we find j* € {1,..., M}\I" for
which the gain, §r(j*) £ J,(I') — Jo(I" U j*), is maximum. Thus, including the
center j* gives the largest decrease in the loss function. We include j* in the
active set and repeat the process k times.

Notice that subset selection allows different tasks to share some key-steps,
e.g., it is expected that videos of ‘making omelette’ and ‘making scrambled egg’
share some key-steps, e.g., ‘break egg’, ‘pour oil’, etc.

2.1.3. Key-Step Localization Network (KLN). The KLN is a student deep
neural network that learns to localize key-steps using pseudo labels provided by
subset selection. More importantly, it allows backpropagating gradients for atten-
tion feature learning by bypassing the non-differentiable discrete subset selection
module. More specifically, for a video ¢ with T} frames, KLN receives Ty atten-
tion feature vectors, { fﬁ?’}f;l. The network then produces outputs {sgé) VI

corresponding to Ty frames, where each output sff) = [3(1(2 séez e sg\fl) t} is an

M-dimensional vector specifying the score that the frame t of the video £ belongs
to each of the M latent states in X. We further normalize the scores using the
softmax function to obtain the probability of each segment ¢ being assigned to
each latent state x,, as

, Vm=1,..., M. (3)

ORI (s1r)

Cn e (s1)
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In the experiments, we describe the exact architecture, consisting of a se-
quence of 1D convolutions, 1D pooling and 1D deconvolutions, used for the
KLN. Given that training videos do not have key-step annotations and only
contain video task labels, we use the output of the subset selection, which gives
the M-dimensional one-hot encoding of each frame to each latent state (more
precisely, the assignment of each frame to each of the k selected key-states) as
pseudo labels to train the KLN; see the subsection for the loss function and the
learning scheme.

Remark 2. While one can only use the task labels of videos as a form of weak
supervision, we show in the experiments that key-step supervision from subset
selection plays a pivotal role in improving the key-step localization performance.

2.1.4. Task Classification Network (TCN) with Learnable Key-Step
Pooling. Our goal is to have a network that predicts the task label of a video, in
addition to localization of key-steps. This also allows us to use the weak supervi-
sion, i.e., video label, for better localization of key-steps. To do so, we make two
observations: i) not all attention features should be used for video classification:
only the ones corresponding to key-steps should be used; ii) not all attention
features corresponding to key-steps are equally important for video classification:
the key-steps common across different tasks should be less emphasized, while
discriminative key-steps more specific to the task should be more emphasized
for video classification.

To take into account these observations, we first compute a key-step based
attention feature for each of the M latent states by aggregating attention features
that are assigned to each latent state by using the output of the KLN. More
specifically, for each latent state m, we build a global key-step based feature

iy
R 23" p £, (4)

t=1

by taking the weighted average of the frame attention features, where the weight
of each frame is the probability that it belongs to the latent state m. Given M
global feature, {h,(f;)}%:h we propose a learnable pooling mechanism that aggre-
gates the features with different weights, by upweighting the discriminative ones
for video classification and downweighting the non-discriminative ones. More
specifically, we learn weights Bm(h%)) for each key-step based attention feature

and combine them to form the final video feature,

7O iﬁ (BOVRY, B, (D) exp(mg(hly)) 5)
£ m\Itm m m\y ) = o . 5
= S exp(mg(hlL)

where the weights are parameterized by a neural network whose outputs mg (R9)

for given inputs {h%) M_ . are normalized by a softmax function across all key-

steps. This could also be seen as an attention mechanism on the key-step based
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features. Finally, we use the global video feature, ’_l(g), as input to a fully con-
nected network, whose output is the probability of the video belonging to each
of the |A| tasks.

2.2 Proposed Learning Method

In order to train the parameters of the spatial attention network (SAN), key-step
localization network (KLN) and Task Classification Network (TCN), using the
key-step pseudo labels provided by the unsupervised subset selection module and
using the ground-truth task labels, we propose to minimize a loss function that
consists of the combination of a ranking loss for the key-step supervision and
the cross-entropy loss for the video classification. More specifically, we minimize

L £ ‘Crank + A[-"ce; ‘Cce £ - Z logpzlv (6)
¢

where L., is the cross-entropy loss that measures the consistency between the
classification network’s output and the ground-truth task label (p§ is the proba-
bility of video ¢ belonging to task a). The ranking loss, £,4nk, promotes consis-
tency between the outputs of the localization network and subset selection, i.e.,
for the t-th frame of the video ¢, it must produce a higher score for the state r@,
which is the key-state obtained by subset selection to represent the segment t.

Hence, we define

1
Lorank = E 7 E g max (O, 1-— silg) T sgﬁ),t), (7)
¢ b

t m;ériz)

whose minimization promotes to have the score of the pseudo ground-truth state

5(2) , in the output of KLN be larger by a margin of one (other margins could

be used as the network learns to automatically adjusts the weights accordingly)
than the scores of other latent states.

We train our model by alternating between running subset selection and
learning the DNN parameters. To find M states for subset selection, we use
mini-batch kmeans [25], which finds cluster centers via gradient descent steps.
Therefore, we refine the cluster centers while ensuring the consistency on the
cluster assignments every time we rerun the kmeans (making sure the m-th center
in an iteration of kmeans updates the m-th center in the previous iteration).

Remark 3. One could use a cross entropy loss instead of the ranking loss to
enforce consistency between the predictions of KLN and the subset selection
outputs. In our experiments, however, the ranking loss performed better, as it
is less restrictive, only enforcing the output of the KLN to give better score for
the true key-step.
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3 Experiments

In this section, we evaluate the performance of our framework on two instruc-
tional video datasets. We first perform experiments for the setting where all
videos belong to the same task and then show results for the setting where
videos come from multiple tasks.

3.1 Experimental Setup

Datasets. We perform experiments on ProceL [9] and CrossTask [37].2 The
ProceL is a medium-scale dataset of 12 diverse tasks, such as set up Chromecast,
assemble clarinet and replace iPhone battery. Each task consists of about 60
videos and on average contains 8 key-steps. CrossTask is a large instructional
video dataset with 18 primary tasks ranging from cooking activities such as make
kimchi fried rice to fixing car such as jack up car. There are 2,750 videos for these
primary tasks with 7 key-steps per task on average. In both datasets, each task
has a grammar of key-steps, e.g. ‘perform CPR’ consists of ‘call emergency’,
‘check pulse’, ‘open airway’, ‘give compression’ and ‘give breath’, where each
video is annotated with the key-steps. Each video may not contain all the key-
steps and the order of key-steps in some videos could be different, as there are
multiple ways to perform the same task.

In the multi-task experiments, for ProceLi, we randomly select videos in each
task such that it has at least 10 videos for testing and at most 50 training videos.
For CrossTask, we randomly select 70% of the videos in each task for training
and the remaining 30% of videos are used for testing.

Evaluation Metrics. We measure the performance of key-step localization and
task label classification as a function of the number of key-steps. For key-step
localization, we report Recall and F1 score (Precision can be computed from
Recall and F1). For Recall, we compute the ratio between the number of frames
having correct key-step prediction and the number of ground-truth key-step
frames across all key-steps. Precision is similar to recall except the denominator
is the number of frames assigned to key-steps. F1 is the harmonic mean between
Recall and Precision. Thus, unlike prior work [1,9] that count 1 or 10 correct
frame intersection as a true detection, we use the actual number of frames in
the intersection to compute the scores, hence, the scores will be lower. For task
classification, we use the standard classification accuracy over videos.

Implementation Details. We extract feature map from the last convolutional
layer of VGG19 which has the size of 7 x 7 x 512 as frame inputs to the model.
We subsample 2 frames per second from each video to reduce the complexity of
the model. In our framework, the spatial attention and the learnable key-step
pooling each is parametrized by a neural network with 1 hidden layer of size

2 While COIN [29] is a large dataset of instructional videos, on average each task
consists of only 4 key-steps and each video is annotated with three key-steps, which
does not allow to effectively evaluate the performance of different methods for key-
step localization, as multiple key-steps are not annotated in each video.
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equal to the input layer and the activation is set to hyperbolic tangent function.
In the task classification network, once the global video feature is computed
using the output of the learnable key-step pooling, we apply an additional layer
to classify the task label of the given video.

To build the key-step localization network (KLN), we make connection be-
tween our goal, which is to take Ty input vectors and output 7, vectors each of
dimension M, and semantic image segmentation whose goal is to take an input
image and produce an output image where each pixel takes one of few discrete
values corresponding to a category. Thus, we take the network in [16] and, given
that we are working with sequential data instead of 2D images, we convert 2D
convolutions, 2D pooling and 2D deconvolutions to, respectively, 1D temporal
convolutions, 1D pooling and 1D deconvolutions [23].

We implement our model in PyTorch and optimize with the default setting
of RMSprop [30] with the learning rate 0.001, weight decay 0.0001 and batch
size of 1 video. For the task-specific setting, where we use videos of each task
separately to learn one model per task, we train all variants of our model for
10 and 5 epochs on Procel. and CrossTask, respectively, and use M = 30. In
the multi-task setting, where we use all videos across all tasks to learn a single
model, we train our framework with 3 and 2 epochs for Procel. and CrossTask,
respectively. To optimize our model, we set A = 0.5 for the multi-task setting
(A = 0 for single-task) and set M = 50 (we use larger M compared to the single-
task setting as we have more key-steps collectively). Given that Procel. comes
with segmentation of videos into superframes, we use segments and aggregate
attention features in each segment as the input to DNNs and subset selection.
For CrossTask, we use attention features of frames directly as inputs.

3.2 Experimental Results

We perform experiments for the task-specific setting, learning a model for each
task, and the multi-task setting, learning one model for videos across all tasks.

3.2.1. Task-Specific Results. Given that existing unsupervised procedure
learning algorithms work with videos of one task and learn a model separately
for each task, we first perform experiments in this task-specific setting to in-
vestigate the effectiveness of our approach compared to the state of the art.3
We compare with a simplified version of JointSeqFL (by ignoring the dynamic
model, hence, setting the hyperparameter § to zero) [9], which is a collaborative
summarization algorithm, and the Temporal Embedding and Clustering (TEC)
[15], as the two state-of-the-art methods that already have been shown to outper-
form other algorithms, including [1, 26]. We also compare with a simple baseline,
called Random, where we predict the key-step labels of each video by randomly
sampling prediction from a uniform distribution with k values, independently for
each segment/frame. To have a fair comparison, we run our method on videos
of each task without the task classification network, i.e., we do not use the task
labels. Thus, KLN is only self-supervised by the subset selection module.

3 In this setting, there is no training and testing splits and all videos are used for
learning and the localization performance is measured on all videos.
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k=7 k=10 k=12 k=15

Recall F1 |Recall F1 |Recall F1 |Recall F1

Random 148 65| 108 58| 92 56| 75 53
JseqFL 29.6 12.5| 26.6 12.6| 23.0 12.1| 21.3 124
TEC 34.0 13.9| 28.5 13.0| 27.2 13.2| 25.5 12.7

Ours 33.3 13.4| 31.6 13.5| 29.8 13.0| 32.2 14.1

[Ours (multi-task)[ 41.7 16.2] 41.7 16.2] 41.7 16.2] 41.6 16.3

Table 1: Recall and F1 (%) on CrossTask for different number of key-steps, k.

Tables 1 shows the average Recall and F1 scores (%) of different algorithms
on the CrossTask dataset, as a function of the number of key-steps in each task.
Notice that both our method and TEC perform better than JointSeqFL, which
shows the importance of feature learning, as our method is self-supervised by
subset selection, yet allows to learn attention features. Except k = 7, where the
scores of our method are close to TEC, for other values of k, our method generally
achieves much higher localization scores than TEC, especially for £ = 15. Notice
also that for all methods, the F1 score is much lower than Recall, which shows
methods do better on recall than precision.

To investigate the effect of using videos from other tasks, we also show the re-
sults of running our method in the multi-task setting where the TCN is included
and the classification loss is used in addition to the self-supervision (referred to
as “Ours (multi-task)”). In this case, the localization accuracy of our method
significantly improves while being less dependent on the value of k. This comes
from the fact that taking advantage of other tasks allows to better discover the
commonalities within the same task, by predicting the video label as well. An-
other advantage of this approach is that we will learn one model across all tasks,
which we could later apply to any new video, while for the state of the art, one
learns a separate model for each task and it is not clear how to localize key-steps
of a new video for which the underlying task label is unknown.

3.2.2 Multi-Task Results. We consider the setting where we have videos of
multiple tasks and our goal is to learn a single model that classifies the underlying
task of a test video and recovers its segmentation according to assignments to
key-steps.* We investigate the effect of different components of our framework
as well as the effect of training using video label only versus training using both
video labels and self-supervision.

Tables 2 and 3 show the Recall and F1 scores for key-step localization and
task classification accuracy on ProceLl and CrossTask, respectively. We show the
effect of using spatial attention alone, learnable key-step pooling alone, and the
combination of the two, where in all we use the supervision from both task class
and subset selection. From the results, we make the following conclusions:

— The video classification accuracy on both datasets is always higher when us-
ing both spatial attention and learnable key-step pooling than using only one.

4 This is different and more challenging than weakly supervised learning from instruc-
tional videos [13,22, 3,5, 37], which assume knowing the list of key-steps in videos.
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k=17 k=10 k=12 k=15
R F1 Acc| R F1 Acc| R F1 Acc| R F1 Acc
Attention |22.0 11.3 88.3|24.4 12.6 89.6(24.7 12.9 88.3(20.9 10.4 &89.2
Learn. Pool. |25.7 13.3 91.7|24.0 12.1 90.8|23.1 12.0 90.8(24.5 12.5 90.8
Both 26.7 14.0 92.6|/23.8 12.4 91.7|23.8 12.8 93.3/22.8 11.8 93.8

Table 2: Localization Recall and F1 scores and classification accuracy (Acc), in precent,
of different algorithms on ProceL for different number of key-steps, k.

k=17 k=10 k=12 k=15
R F1 Acc| R F1 Acc| R F1 Acc| R F1 Acc
Attention [39.2 16.0 74.3|27.6 11.1 71.7|28.3 11.4 71.7|34.9 13.8 73.8
Learn. Pool. | 34.7 13.8 70.1(24.2 10.4 66.6]29.9 12.5 72.9(22.8 10.6 72.8
Both 41.1 16.2 79.1|/41.2 16.3 80.4|41.1 16.2 79.5|/41.0 16.3 77.9

Table 3: Localization Recall and F1 scores and classification accuracy (Acc), in precent,
of different algorithms on CrossTask for different number of key-steps, k.

O

80 P Recall] 782 80.4 772
®F! . —~ 8
% Acc § §
g\iGO :‘Elo E 6
o =} £ 4
540 g S
a 2 22
o 5 o
20115 E E 0
. o 5
A=0.00 0.25 0.50 1.00 k=7 k=10 k=12 k=15 k=7 k=10 k=12 k=15

Fig. 2: Effect of the regularization parameter A (left), effect of self-supervision for the
multi-task setting on ProceL (middle) and CrossTask (right).

For localization, the performance of different settings are close on ProceL, where
there is no clear winner across all £’s. We believe this is due to not having enough
videos to effectively train the deep networks. On the other hand, on CrossTask
that has a larger number of videos, the localization performance significantly im-
proves when using both attention and learnable pooling, in particular, improving
the F1 score by more than 5.7% for both k& € {10,15} and more than 2.4% for
k € {7,12}. Notice that, similar to the task-specific setting, the performance of
our method on CrossTask is robust for different values of k.

— Given that CrossTask has a larger number of videos per task than ProceL, the
localization is generally higher on CrossTask than ProceL, as the DNN benefits
from having more training videos. On the other hand, the task classification
accuracy is higher on ProceL than CrossTask. This comes from the fact that the
12 tasks in ProceL are diverse with less overlap (except two about cooking and
two about fixing cars), while thel8 tasks in CrossTask have more overlap (e.g.,
several on cooking and several on making drinks).

Effect of Self-Supervision and Hyperparameter. Figure 2 (left) shows the
effect of the regularization parameter A in (6) on the localization performance
(Recall and F1) and classification accuracy (Acc) on CrossTask for k& = 10.
Notice that while all scores are maximum for A = 0.5, achieving Recall= 41.2,
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Fig. 3: Improvement obtained by learning attention features over not using attention on
CrossTask (left), improvement obtained by fine tuning when learning attention features
on ProceL (middle) and CrossTask (right). All results are for the multi-task setting.

F1=16.3 and Acc=80.4, the performance does not change much for other values
of A, e.g., achieving Recall= 40.6, F1= 16.1 and Acc=T78.2 for A = 0.25. As
expected, when A = 0 (no task classification loss), Acc is low. Figure 2 (middle,
right) show the improvement obtained by using both self-supervision via subset
selection and task labels of videos over only using task labels on ProceL (middle)
and CrossTask (right). Notice that the localization performance significantly
improves on both datasets when using the self supervision. The classification
accuracy always improves on Procel. with smaller number of videos, as subset
selection provides more supervision to train the deep architecture, including
the classification network. On the other hand, the classification accuracy on
CrossTask slightly decreases. This comes from the fact that there are already
enough videos for effective training of the video classifier, hence, including the
localization loss puts less emphasis on the video classification performance.

3.2.3. Effect of Attention Feature Learning and Fine Tuning. As we dis-
cussed earlier, in instructional videos, task-related informative regions of frames
often correspond to small regions where human and object(s) interact. Thus, we
use attention features to automatically focus on such informative regions to ex-
tract feature from. These features are not only given to the DNN, but also to
the subset selection that provides supervision for the localization. Figure 3 (left)
shows the Recall and F1 improvement obtained by learning attention features
over not using any attention for £k = 7 and k£ = 12 for the multi-task setting on
CrossTask. We show the improvement for subset selection as well as the deep
network without and with learnable pooling (LP). In all cases, using attention
improves the performance. In other words, using the subset selection supervi-
sion and back-propagating gradient via the differentiable network, we obtain
better features that subsequently improve the performance of not only KLN but
the subset selection itself. It is also worth noting that in all cases, KLN enjoys
higher improvement than subset selection, thanks to the capacity and general-
ization power of the DNN compared to subset selection that works directly on
centroids. Figure 3 (middle, right) show the effect of fine-tuning the last two
layers of the VGG network on ProceL. (middle) and CrossTask (right) for the
multi-task setting. Notice that fine-tuning on ProceL generally improves the per-
formance, while on CrossTask it could improve or degrade the performance. In



14 E. Elhamifar and D. Huynh

CHECK OPEN

UNSCREW OPEN BACK- REMOVE BACK- PUT |  CHECK BACK-
PULSE AIRWAY

SCREEN SCREEN GROUND BATTERY PLATE GROUND BATTERY EDANGEROUS GROUND

EREATH CDMPRESSIDN

1T

E
I

REPLACE IPHONE BATTERY H PERFORM CPR

DOWNLOAD

MAKE COFFEE | SET UP CHROMECAST

CHECK SETUP
CODE NAME

EVEN SCREW PUT SEE \ PLUGIN BACK-
COFFEE SURFACE TOP STOVE COFFEE USB GROUND

=
E3

I. g 0
. X

1

.

Fig. 4: Visualization of the spatial attention and strength of key-step weights (shown
below spatial attention) learned by our method for videos from four tasks. Notice that,
in general, our method successfully focuses on the informative regions of frames and
the learnable pooling gives higher weights to more informative key-steps.

all cases, the localization performance slightly changes, which shows attention
feature learning already provides sufficient information for localization.

3.2.4. Qualitative Results. Figure 4 shows both the learned spatial attention
of our network and the strength of key-steps (which is the product between the
probability of the most probable latent state in a frame and the key-step weight
corresponding to that latent state) for videos from four tasks in ProceL. Notice
that in all, our method attends to informative regions, e.g., in ‘change iPhone
battery’, it attends to ‘screen’ or ‘battery’ in the associated key-steps. Similarly,
for ‘CPR’, our attention learns to focus on the patient’s neck for ‘check pulse’
or his mouth/chest for ‘give breath’/‘give compression’. On the other hand,
to recognize the task, the learnable key-step pooling gives higher weights to
actual key-steps and less weights to background frames. Most notably, it gives
the largest weights to ‘give breath’ and ‘give compression’ in CPR, which are
the most discriminative steps of CPR. In ‘setup Chromecast’ where some of the
steps are visually very similar, however, it gives a high weight to the background,
reducing the performance.

4 Conclusions

We developed a self-supervised multi-task procedure learning method that al-
lows to learn a single deep neural network (DNN) for discovering key-steps and
task classification using training videos from multiple tasks. By experiments on
two instructional video datasets, we showed the effectiveness of our method for
unsupervised discovery of procedure steps and video classification.
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