

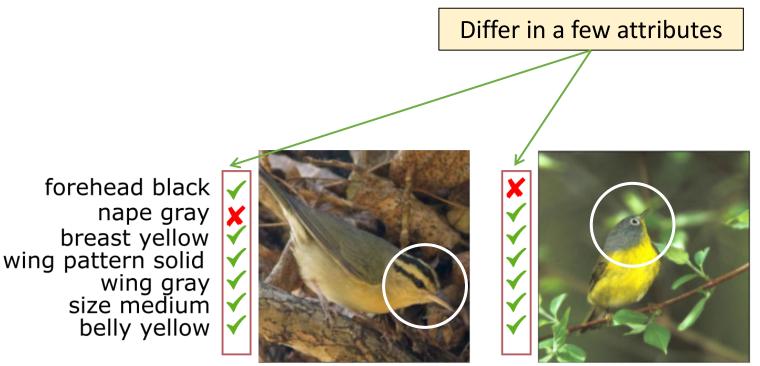
Compositional Zero-Shot Learning via Fine-Grained Dense Feature Composition

Dat Huynh and Ehsan Elhamifar

Khoury College of Computer Sciences Northeastern University

Motivation

- Fine-Grained Recognition: recognize visually similar classes
 - Classes differ in a few attributes
 - Costly: require expert annotator
 - Cannot handle unseen classes



Motivation

- Fine-Grained Recognition: recognize visually similar classes
 - Classes differ in a few attributes
 - Costly: require expert annotator
 - Cannot handle unseen classes
- Zero-Shot Learning: recognize unseen classes without training samples
 - Reduce annotation cost

Using attribute descriptions

forehead black nape gray breast yellow wing pattern solid wing gray size medium belly yellow

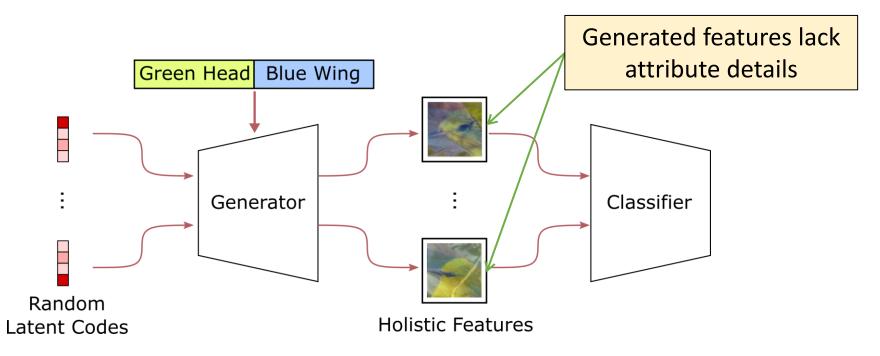
Unseen

Seen

Seen

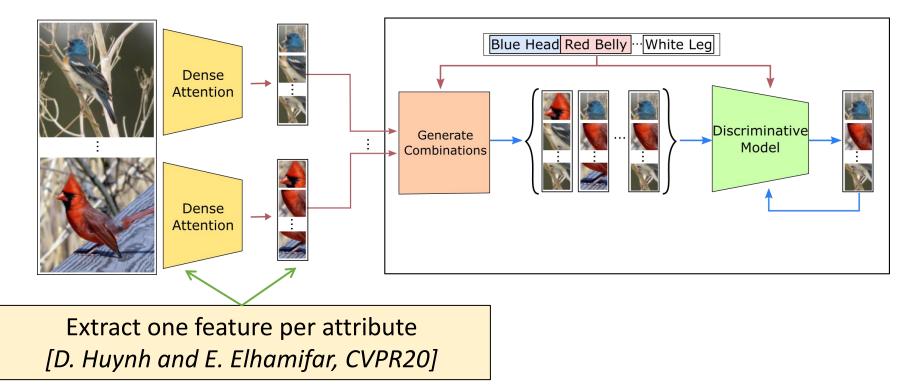
State of the Art

- Generative Methods: train <u>a classifier</u> on unseen class features synthesized by <u>a generator</u>
- Challenge:
 - Generate holistic features lacking attribute details



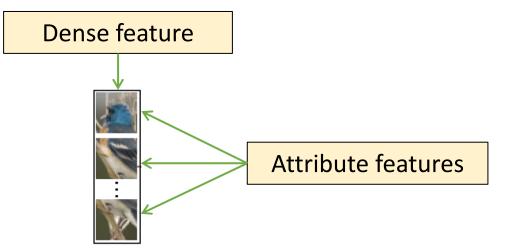
Contributions

- Address fine-grained ZSL
- Propose a *compositional feature learning* framework:
 - Generate dense features preserving fine-grained details
 - Directly train a classifier without learning separate generative models
 - Outperform SOTA on DeepFashion, AWA2 and CUB



Challenges

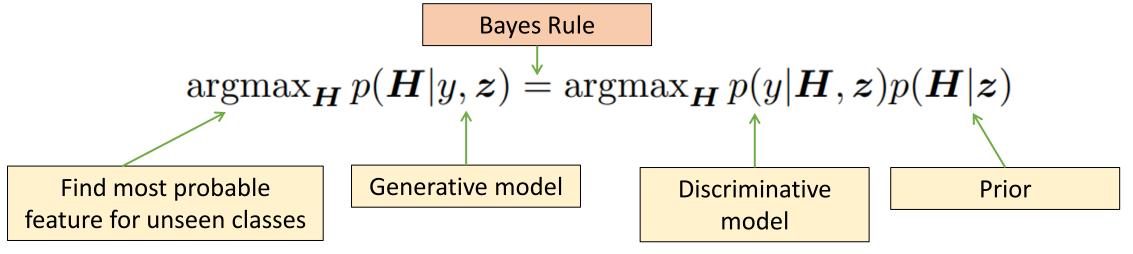
• Generate dense feature H: collection of attribute features



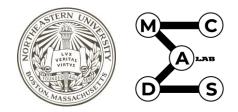
- <u>Challenge</u>: **Difficult** to learn generative models
 - High dimension
 - No sample for unseen classes

Feature Composition

• Transform a discriminative model p(y|H, z) into a generative model

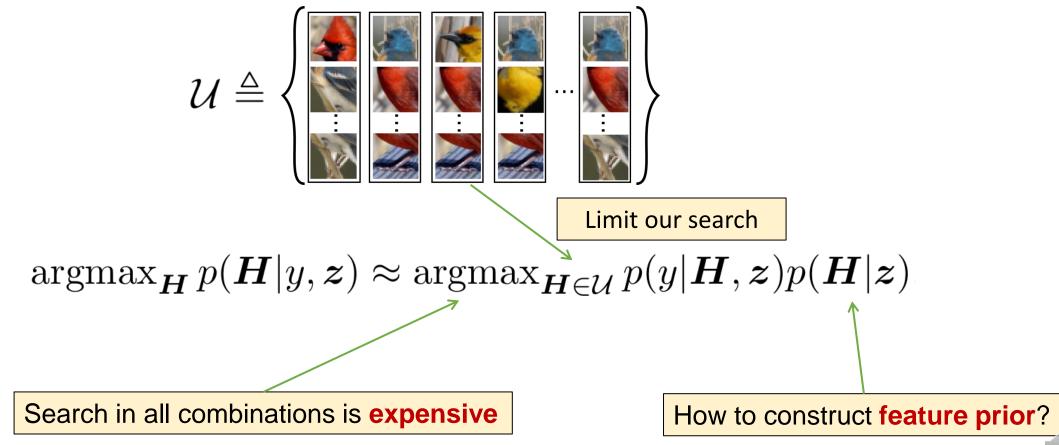


- <u>Challenge</u>:
 - Search for most probable feature in high dimension space of $oldsymbol{H}$ is intractable



Feature Composition

- Limit our search in combinations of attribute features across samples
 - Simulate unseen attribute combinations
 - Tractable due to finite number of combinations



Feature Prior

loss

- **Restrict the search** to combinations from related sample sets Q_u
 - Set of samples best reconstruct the unseen class attributes

$$\mathbf{Q}_{u} \triangleq \operatorname{argmin}_{S} \left(\min_{\gamma} \| \boldsymbol{z} - \sum_{i \in S} \boldsymbol{z}^{i} \gamma_{i} \|_{2}^{2} \right)$$

- Construct feature prior
 - Independence among attribute features
 - The more related a sample, the more probable its feature will be used

Measure sample relatedness

$$p(\boldsymbol{H}|\boldsymbol{z}^{u}) \triangleq \prod_{a=1}^{A} p(\boldsymbol{h}_{i_{a}}^{a}|\boldsymbol{z}^{u}), \quad p(\boldsymbol{h}_{i_{a}}^{a}|\boldsymbol{z}^{u}) \triangleq \begin{cases} \frac{\exp\left(\langle \boldsymbol{z}^{i_{a}}, \boldsymbol{z}^{u} \rangle\right)}{\sum_{i \in Q_{u}(S)} \exp\left(\langle \boldsymbol{z}^{i}, \boldsymbol{z}^{u} \rangle\right)}, & \text{if } i_{a} \in Q_{u}, \\ 0, & \text{otherwise,} \end{cases}$$
Attribute feature of sample i_{a}

Proposed Method

1. Generate candidate combinations from feature prior

Attention

2. Pick the most probable combination among candidates

$$M_{u} = \{\boldsymbol{H} | \boldsymbol{H} \sim p(\boldsymbol{H} | \boldsymbol{z}^{u}) \}$$

$$H_{u} \triangleq \operatorname{argmax}_{\boldsymbol{H} \in M_{u}} p(u | \boldsymbol{H}, \boldsymbol{z}^{u}) p(\boldsymbol{H} | \boldsymbol{z}^{u})$$
generate candidate combinations
$$\overbrace{\text{Blue Head} Red Belly \cdot White Leg}}$$
Blue Head Red Belly · White Leg}
$$\overbrace{\text{Blue Head} Red Belly \cdot White Leg}}$$

11 > 1

/ **TT**

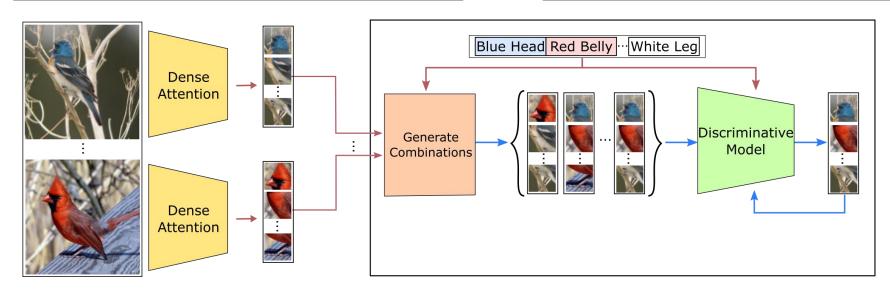
Proposed Method

- 1. Generate candidate combinations from feature prior
- 2. Pick the most probable combination among candidates
- 3. Train the discriminative model on real and composed features

$$\min \mathbb{E}_{S} \left[-\frac{1}{|S|} \sum_{i \in S} y_{i} \log p(y_{i} | \boldsymbol{H}_{i} \boldsymbol{z}^{y_{i}}) - \frac{1}{|\mathcal{C}_{u}|} \sum_{u \in \mathcal{C}_{u}} u \log p(u | \boldsymbol{H}_{u}, \boldsymbol{z}^{u}) \right]$$

Cross-entropy with seen class features

Cross-entropy with composed features



Experiments

• Outperform SOTA on DeepFashion, AWA2, CUB

Method	DFashion (5691 images/class)				AWA2 (588 images/class)				CUB (47 images/class)			
	$u \rightarrow u$	$a \rightarrow s$	$a \rightarrow u$	H	$u \rightarrow u$	$a \rightarrow s$	$a \rightarrow u$	H	$u \rightarrow u$	$a \rightarrow s$	$a \rightarrow u$	H
CVC	-	-	-	-	71.1	81.4	56.4	66.7	54.4	47.6	47.4	47.5
TripletLoss	-	-	-	-	67.9	83.2	48.5	61.3	63.8	52.3	55.8	53.0
f-VAEGAN-d2	-	-	-	-	71.1	70.6	57.6	63.5	61.0*	60.1*	48.4*	53.6*
CADA-VAE	-	-	-	-	-	75.0	55.8	64.0	-	53.5	51.6	52.5
f-Translator	40.7	30.5	23.9	26.8	70.4	72.6	55.3	62.6	58.5	54.8	47.0	50.6
DAZLE	38.4	38.1	21.5	27.5	67.9	75.7	60.3	67.1	65.9	59.6	56.7	58.1
Composer (Ours)	43.0	32.9	31.2	32.0	71.5	77.3	62.1	68.8	69.4	56.4	63.8	59.9
	1		<u> </u>									
	+4.5%				%	+1.7%					+1.8%	

Qualitative Results

Generated features are interpretable

